Поиск по этому блогу

четверг, 27 октября 2016 г.

  ГРЕЦЬКА МАТЕМАТИКА

Класична Греція. З точки зору 20 ст. родоначальниками математики з'явилися греки класичного періоду (6-4 ст. до н.е.). Математика, що існувала в більш ранній період, була набором емпіричних висновків. Навпаки, в дедуктивному міркуванні нове твердження виводиться з прийнятих посилок способом, що виключає можливість його неприйняття.
Наполягання греків на дедуктивному доказі було екстраординарним кроком. Жодна інша цивілізація не дійшла до ідеї отримання висновків виключно на основі дедуктивного міркування, що виходить з явно сформульованих аксіом. Одне з пояснень прихильності греків методам дедукції ми знаходимо в пристрої грецького суспільства класичного періоду. Математики і філософи (нерідко це були одні й ті ж особи) належали до вищих верств суспільства, де будь-яка практична діяльність розглядалася як негідне заняття. Математики воліли абстрактні міркування про числа і просторових відносинах вирішенню практичних завдань. Математика ділилася на арифметику - теоретичний аспект і логістику - обчислювальний аспект. Займатися логістикою надавали вільнонароджені нижчих класів і рабам.
Грецька система числення була заснована на використанні букв алфавіту. Аттична система, яка була в ходу з 6-3 ст. до н.е., використовувала для позначення одиниці вертикальну риску, а для позначення чисел 5, 10, 100, 1000 і 10 000 початкові букви їх грецьких назв. В більш пізній ионической системі числення для позначення чисел використовувалися 24 літери грецького алфавіту і три архаїчні літери. Кратні 1000 до 9000 позначалися так само, як перші дев'ять цілих чисел від 1 до 9, але перед кожною буквою ставилася вертикальна риса. Десятки тисяч позначалися літерою М (від грецького міріоі - 10 000), після якої ставилося те число, на яке потрібно було помножити десять тисяч
Дедуктивний характер грецької математики повністю сформувався до часу Платона і Аристотеля. Винахід дедуктивної математики прийнято приписувати Фалесу Мілетському (бл. 640-546 до н.е.), який, як і багато давньогрецькі математики класичного періоду, був також філософом. Висловлювалося припущення, що Фалес використовував дедукцію для доказу деяких результатів у геометрії, хоча це сумнівно.
Іншим великим греком, з чиїм ім'ям пов'язують розвиток математики, був Піфагор (бл. 585-500 до н.е.). Вважають, що він міг познайомитися з вавілонської і єгипетської математикою під час своїх довгих мандрівок. Піфагор заснував рух, розквіт якого припадає на період бл. 550-300 до н.е. Піфагорійці створили чисту математику у формі теорії чисел і геометрії. Цілі числа вони представляли у вигляді конфігурацій з точок або камінчиків, класифікуючи ці числа у відповідності з формою виникають фігур («фігурні числа»). Слово «калькуляція» (розрахунок, обчислення) бере початок від грецького слова, що означає «камінчик». Числа 3, 6, 10 і т.д. піфагорійці називали трикутними, так як відповідне число камінчиків можна розташувати у вигляді трикутника, числа 4, 9, 16 і т.д. - Квадратними, так як відповідне число камінчиків можна розташувати у вигляді квадрата, і т.д.
З простих геометричних конфігурацій виникали деякі властивості цілих чисел. Наприклад, піфагорійці виявили, що сума двох послідовних трикутних чисел завжди дорівнює деякому квадратному числа. Вони відкрили, що якщо (в сучасних позначеннях) n2 - квадратне число, то n2 + 2n +1 = (n + 1) 2. Число, яке дорівнює сумі всіх своїх власних дільників, крім самого цього числа, піфагорійці називали досконалим. Прикладами досконалих чисел можуть служити такі цілі числа, як 6, 28 і 496. Два числа піфагорійці називали дружніми, якщо кожне з чисел дорівнює сумі дільників іншого, наприклад, 220 і 284 - дружні числа (і тут саме число виключається з власних дільників).
Для піфагорійців будь-яке число являло собою щось більше, ніж кількісну величину. Наприклад, число 2 згідно їхню думку означало відмінність і тому ототожнювалося з думкою. Четвірка представляла справедливість, тому що це перше число, що дорівнює добутку двох однакових множників.
Піфагорійці також відкрили, що сума деяких пар квадратних чисел є знову квадратне число. Наприклад, сума 9 і 16 дорівнює 25, а сума 25 і 144 дорівнює 169. Такі трійки чисел, як 3, 4 і 5 або 5, 12 і 13, називаються Числа Піфагора. Вони мають геометричну інтерпретацію, якщо два числа з трійки прирівняти довжинам катетів прямокутного трикутника, то третє число дорівнюватиме довжині його гіпотенузи. Така інтерпретація, мабуть, привела піфагорійців до усвідомлення більш загального факту, відомого нині під назвою теореми Піфагора, згідно з якою в будь-якому прямокутному трикутнику квадрат довжини гіпотенузи дорівнює сумі квадратів довжин катетів.
Розглядаючи прямокутний трикутник з одиничними катетами, піфагорійці виявили, що довжина його гіпотенузи дорівнює , І це глибоко шокувало їх коли почули, що вони марно намагалися представити число у вигляді відношення двох цілих чисел, що було вкрай важливо для їхньої філософії. Величини, непредставімие у вигляді відношення цілих чисел, піфагорійці назвали несумірними; сучасний термін - «ірраціональні числа». Близько 300 до н.е. Евклід довів, що число незрівнянно. Піфагорійці мали справу з ірраціональними числами, представляючи всі величини геометричними образами. Якщо 1 і вважати довжинами деяких відрізків, то різниця між раціональними та ірраціональними числами згладжується. Твір чисел і є площа прямокутника зі сторонами довжиною і . Ми і сьогодні іноді говоримо про число 25 як про квадраті 5, а про число 27 - як про кубі 3.
Стародавні греки вирішували рівняння з невідомими за допомогою геометричних побудов. Були розроблені спеціальні побудови для виконання додавання, віднімання, множення і ділення відрізків, вилучення квадратних коренів з довжин відрізків; нині цей метод називається геометричної алгеброю.
Приведення завдань до геометричного увазі мало ряд важливих наслідків. Зокрема, числа стали розглядатися окремо від геометрії, оскільки працювати з непомірними відносинами можна було тільки за допомогою геометричних методів. Геометрія стала основою майже всієї суворої математики принаймні до1600. І навіть у 18 ст., Коли вже були досить розвинені алгебра і математичний аналіз, сувора математика трактувалася як геометрія, і слово «геометр» було рівнозначне слову «математик».
Саме піфагорійцям ми багато в чому зобов'язані тієї математикою, яка потім була систематизовано викладено й доведена в Началах Евкліда. Є підстави вважати, що саме вони відкрили те, що нині відоме як теореми про трикутниках, паралельних прямих, багатокутниках, колах, сферах і правильних багатогранників.
Одним з найвидатніших піфагорійців був Платон (бл. 427-347 до н.е.). Платон був переконаний, що фізичний світ збагненний лише за допомогою математики. Вважається, що саме йому належить заслуга винаходу аналітичного методу доказу. (Аналітичний метод починається з твердження, яке потрібно довести, і потім з нього послідовно виводяться слідства до тих пір, поки не буде досягнутий якийсь відомий факт; доказ виходить за допомогою зворотного процедури.) Прийнято вважати, що послідовники Платона винайшли метод докази, що отримав назву «доказ від протилежного». Помітне місце в історії математики займає Аристотель, учень Платона. Аристотель заклав основи науки логіки і висловив ряд ідей щодо визначень, аксіом, нескінченності і можливості геометричних побудов.
Найбільшим з грецьких математиків класичного періоду, поступався за значимістю отриманих результатів тільки Архімед, був Евдокс (бл. 408-355 до н.е.). Саме він ввів поняття величини для таких об'єктів, як відрізки прямих і кути. Маючи в своєму розпорядженні поняттям величини, Евдокс логічно суворо обгрунтував піфагорейський метод поводження з ірраціональними числами.
Роботи Евдокса дозволили встановити дедуктивну структуру математики на основі явно сформульованих аксіом. Йому ж належить і перший крок у створенні математичного аналізу, оскільки саме він винайшов метод обчислення площ і обсягів, що отримав назву «методу вичерпування». Цей метод полягає в побудові вписаних і описаних плоских фігур або просторових тіл, які заповнюють («вичерпують») площа або об'єм тієї фігури або того тіла, яке є предметом дослідження. Евдокс ж належить і перша астрономічна теорія, яка пояснює спостережуваний рух планет. Запропонована Евдоксом теорія була чисто математичної; вона показувала, яким чином комбінації обертових сфер з різними радіусами і осями обертання можуть пояснити здаються нерегулярними руху Сонця, Місяця і планет.
Близько 300 до н.е. результати багатьох грецьких математиків були зведені в єдине ціле Евклідом, що написав математичний шедевр Почала. З небагатьох проникливо відібраних аксіом Евклід вивів близько 500 теорем, що охопили всі найбільш важливі результати класичного періоду. Своє твір Евклід почав з визначення таких термінів, як пряма, кут і коло. Потім він сформулював десять самоочевидних істин, таких, як «ціле більше будь-якої з частин». І з цих десяти аксіом Евклід зміг вивести всі теореми. Для математиків текст Почав Евкліда довгий час служив зразком строгості, поки в 19 ст. не виявилося, що в ньому є серйозні недоліки, такі як неусвідомлене використання несформульованих в явному вигляді припущень.
Аполлоній (бл. 262-200 до н.е.) жив в олександрійський період, але його основна праця витриманий у дусі класичних традицій. Запропонований ним аналіз конічних перерізів - кола, еліпса, параболи і гіперболи - стала кульмінацією розвитку грецької геометрії. Аполлоній також став засновником кількісної математичної астрономії.
Олександрійський період. У цей період, який почався близько 300 до н.е., характер грецької математики змінився. Олександрійська математика виникла в результаті злиття класичної грецької математики з математикою Вавилонії та Єгипту. У цілому математики олександрійського періоду були більше схильні до вирішення суто технічних завдань, ніж до філософії. Великі олександрійські математики - Ератосфен, Архімед, Гіппарх, Птолемей, Діофант і Папп - продемонстрували силу грецького генія в теоретичному абстрагуванні, але настільки ж охоче застосовували свій талант до вирішення практичних проблем і суто кількісних завдань.
Ератосфен (бл. 275-194 до н.е.) знайшов простий метод точного обчислення довжини кола Землі, йому ж належить календар, в якому кожен четвертий рік має на один день більше, ніж інші. Астроном Аристарх (бл. 310-230 до н.е.) написав твір Про розміри і відстанях Сонця і Місяця, що містив одну з перших спроб визначення цих розмірів і відстаней; за своїм характером робота Аристарха була геометричній.
Найбільшим математиком давнину був Архімед (бл. 287-212 до н.е.). Йому належать формулювання багатьох теорем про площі та обсяги складних фігур і тіл, цілком строго доведені ним методом вичерпування. Архімед завжди прагнув отримати точні рішення і знаходив верхні і нижні оцінки для ірраціональних чисел. Наприклад, працюючи з правильним 96-кутником, він бездоганно довів, що точне значення числа  знаходиться між 31 / 7 та 310/71. Архімед довів також декілька теорем, що містили нові результати геометричної алгебри. Йому належить формулювання задачі про розтині кулі площиною так, щоб обсяги сегментів знаходилися між собою в заданому відношенні. Архімед вирішив цю задачу, відшукавши перетин параболи і равнобочной гіперболи.
Архімед був найбільшим математичним фізиком давнини. Для доказу теорем механіки він використовував геометричні міркування. Його твір За плаваючих тілах заклало основи гідростатики. Згідно з легендою, Архімед відкрив носить його ім'я закон, згідно з яким на тіло, занурене у воду, діє виштовхуюча сила, рівна вазі витісненої ним рідини, під час купання, перебуваючи у ванній, і не в силах впоратися з охопила його радістю відкриття, вибіг оголений на вулицю з криком: «Еврика!» («Відкрив!")
За часів Архімеда вже не обмежувалися геометричними побудовами, здійсненними лише за допомогою циркуля і лінійки. Архімед використав у своїх побудовах спіраль, а Діоклес (кінець 2 ст. До н.е.) вирішив проблему подвоєння куба з допомогою введеної їм кривої, що отримала назву ціссоіди.
У олександрійський період арифметика і алгебра розглядалися незалежно від геометрії. Греки класичного періоду мали логічно обгрунтовану теорію цілих чисел, однак олександрійські греки, сприйнявши вавілонську і єгипетську арифметику і алгебру, багато в чому втратили вже напрацьовані уявлення про математичної строгості. Що жив між 100 до н.е. і 100 н.е. Герон Олександрійський трансформував значну частину геометричної алгебри греків у відверто несуворі обчислювальні процедури. Однак, доводячи нові теореми евклідової геометрії, він як і раніше керувався стандартами логічної строгості класичного періоду.
Першою досить об'ємистій книгою, в якій арифметика викладалася незалежно від геометрії, було Введення в арифметику Нікомаха (бл. 100 н.е.). В історії арифметики її роль порівнянна з роллю Почав Евкліда в історії геометрії. Протягом понад 1000 років вона служила стандартним підручником, оскільки в ній ясно, чітко і всебічно містилося вчення про цілих числах (простих, складових, взаємно простих, а також про пропорції). Повторюючи багато пифагорейские затвердження, Введення Нікомаха разом з тим йшло далі, так як Нікомах бачив і більш загальні відносини, хоча і приводив їх без доказу.
Знаменною віхою в алгебрі олександрійських греків стали роботи Діофанта (бл. 250). Одне з головних його досягнень пов'язано з введенням в алгебру почав символіки. У своїх роботах Діофант не пропонував загальних методів, він мав справу з конкретними позитивними раціональними числами, а не з їх літерними позначеннями. Він заклав основи т.зв. діофантових аналізу - дослідження невизначених рівнянь.
Вищим досягненням олександрійських математиків стало створення кількісної астрономії. Гіппарх (бл. 161-126 до н.е.) ми зобов'язані винаходом тригонометрії. Його метод був заснований на теоремі, яка каже, що в подібних трикутниках відношення довжин будь-яких двох сторін одного з них дорівнює відношенню довжин двох відповідних сторін іншого. Зокрема, відношення довжини катета, що лежить проти гострого кута А в прямокутному трикутнику, до довжини гіпотенузи має бути одним і тим же для всіх прямокутних трикутників, що мають один і той же гострий кут А. Це ставлення відомо як синус кута А. Відносини довжин інших сторін прямокутного трикутника отримали назву косинуса і тангенса кута А. Гіппарх винайшов метод обчислення таких відносин і склав їх таблиці. Маючи в своєму розпорядженні цими таблицями і легко вимірними відстанями на поверхні Землі, він зміг обчислити довжину її великому колу і відстань до Місяця. За його розрахунками, радіус Місяця склав одну третину земного радіусу; за сучасними даними відношення радіусів Місяця і Землі становить 27/1000. Гіппарх визначив тривалість сонячного року з помилкою всього лише в 61 / 2 хвилини; вважається, що саме він ввів широти і довготи.
Грецька тригонометрія та її застосування в астрономії досягли піку свого розвитку в Альмагесті єгиптянина Клавдія Птолемея (помер в 168 н.е.). У Альмагесті була представлена ​​теорія руху небесних тіл, що панувала аж до 16 ст., Коли її змінила теорія Коперника. Птолемей прагнув побудувати саму просту математичну модель, усвідомлюючи, що його теорія - всього лише зручний математичний опис астрономічних явищ, узгоджене із спостереженнями. Теорія Коперника взяла верх саме тому, що як модель вона виявилася простіше.
Занепад Греції. Після завоювання Єгипту римлянами в 31 до н.е. велика грецька олександрійська цивілізація прийшла в занепад. Цицерон з гордістю стверджував, що на відміну від греків римляни не мрійники, а тому застосовують свої математичні знання на практиці, витягуючи з них реальну користь. Однак у розвиток самої математики внесок римлян був незначний. Римська система числення грунтувалася на громіздких позначеннях чисел. Головною її особливістю був адитивний принцип. Навіть вичитательнимі принцип, наприклад, запис числа 9 у вигляді IX, увійшов у широкий вжиток лише після винаходу набірних літер в 15 ст. Римські позначення чисел застосовувалися в деяких європейських школах приблизно до 1600, а в бухгалтерії і сторіччям пізніше. 

 

Найдавнішою математичної діяльністю був рахунок. Рахунок був необхідний, щоб стежити за поголів'ям худоби і вести торгівлю. Деякі первісні племена підраховували кількість предметів, зіставляючи їм різні частини тіла, головним чином пальці рук і ніг.